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ABSTRACT

The cumulant lattice Boltzmann method (LBM), a variant of LBM, inherently exhibits an implicit large-eddy simulation (LES) effect. To facil-
itate subgrid-scale (SGS) turbulence modeling, we analyze the error terms of the lattice Boltzmann equation and deductively derive a novel,
parameter-free SGS model (hereafter the kinetic model). A priori tests using direct numerical simulation (DNS) data were conducted for
both the absolute magnitude of the SGS volume force and the SGS dissipation. These tests show that, while the gradient model (GM) per-
forms slightly better in terms of local correlation and mean absolute error, the kinetic model (KM) provides closer agreement with DNS in
the global distribution and large-scale coherence of the SGS fields. In this sense, the KM demonstrates superior capability for capturing the
overall structure of turbulent energy transfer. In addition, a posteriori validation using LESs of the Taylor–Green vortex confirms that the
KM reproduces the dissipation rate and energy spectra more accurately than the GM while maintaining numerical stability. Thus, the present
study evaluates the model both a priori and a posteriori, confirming its effectiveness and robustness.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0294087

I. INTRODUCTION

The lattice Boltzmann method (LBM)1 has emerged as a main-
stream approach in fluid mechanics in recent years, serving as an alter-
native to directly solving the Navier–Stokes equations.2 In the LBM,
the velocity space of fluid particles is discretized into a finite set of
velocity vectors, and the distribution function represents the number
of fluid particles associated with each velocity vector. The lattice
Boltzmann equation (LBE) governs the evolution of this distribution
function. Although LBM introduces minor discretization errors, it has
been mathematically proven to reproduce solutions of the Navier–
Stokes equations.3

LBM is categorized into various models based on the treatment of
the collision term. Among these, the cumulant collision model has
gained particular attention for its computational stability and accuracy.4

This model significantly enhances numerical stability in turbulent flow
simulations by modifying only the collision process. Moreover, it exhib-
its high computational reproducibility without requiring explicit turbu-
lence models such as the Smagorinsky model.5 This observation
suggests that the cumulant LBM inherently incorporates the effects of a
subgrid-scale (SGS) turbulence model. This phenomenon is typically
described as implicit large-eddy simulation (ILES), attributed to numer-
ical truncation errors,6 although the underlying mechanism remains

unclear.5 Previous studies, notably those by Chen et al.,7–9 have exten-
sively discussed the ILES characteristics of LBM through numerical
investigations. However, these studies did not provide a direct theoreti-
cal derivation of SGS terms from the underlying LBE.

In contrast, the present study develops a deductive framework for
SGS turbulence modeling based on a systematic error analysis of the
cumulant LBE. Two guiding hypotheses are introduced: (1) the error
terms of the LBE inherently contain physically relevant corrections
analogous to SGS turbulence models, and (2) only those error terms
satisfying spatial rotational symmetry and Galilean invariance should
be retained, while nonphysical anisotropic contributions are excluded.
Applying these principles yields an explicit expression for an SGS vol-
ume force (hereafter referred to as the kinetic model), which is
parameter-free and derived purely from the LBE.

It is essential to clarify that the present model is deductively
derived from the LBE. Its performance is first evaluated through a pri-
ori tests using filtered data from the Johns Hopkins Turbulence
Database (JHTDB), which allow direct assessment of the SGS term
against high-fidelity direct numerical simulation (DNS) data while
avoiding numerical contamination. In these tests, the proposed model
is benchmarked against the well-established gradient SGS model, and
comparisons are made in terms of correlation coefficients, mean
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absolute errors (MAEs), and contour patterns of the SGS volume force.
The results demonstrate that the gradient model (GM) performs
slightly better in terms of local correlation and mean absolute error,
and the kinetic model (KM) provides closer agreement with DNS in
the global distribution and large-scale coherence of the SGS fields.

In addition to the a priori analysis, a posteriori validation is con-
ducted in large-eddy simulations of the Taylor–Green vortex (TGV) at
Re ¼ 1600.10 These simulations confirm that the kinetic model repro-
duces the dissipation rate and energy spectra more accurately than the
gradient model while maintaining numerical stability.

The structure of this paper is as follows. After outlining the guid-
ing hypotheses and the theoretical framework used to derive the SGS
model, we present both a priori validation using DNS data and a poste-
riori validation using large-eddy simulation (LES) of the Taylor–Green
vortex. The paper concludes with a summary of accuracy, stability,
and future perspectives.

II. METHODS

We propose the following two hypotheses to guide SGS model
development:

1. Hypothesis 1: The LBM is analogous to the kinetic theory of gas
molecules. Therefore, the error terms inherent in the LBE are
hypothesized to contain physically relevant corrections analo-
gous to SGS turbulence models.

2. Hypothesis 2: The LBM operates using a finite set of discrete
velocity basis vectors arranged in fixed directions. As a result, the
error terms may include components that violate spatial rota-
tional symmetry and/or Galilean invariance. We explicitly elimi-
nate nonphysical terms that violate spatial rotational symmetry
and/or Galilean invariance from the derived SGS corrections.

These hypotheses form the foundation of our approach. We start
from the following LBE, adopt the D3Q27 velocity basis,11 and apply
established expansion theories,12,13

fi x þ cidt ; t þ dtð Þ � fi x; tð Þ ¼ � 1
u

fi � f eqi
� �

; (1)

where fi denotes the distribution function of the ith discrete velocity, x
is the spatial coordinate, f eqi is the equilibrium function,11 t is the time
coordinate, and u is the single-relaxation-time (SRT) parameter.

The macroscopic governing equations, expanded up to the order
of D2 (where D represents the mesh size), are presented later. For brev-
ity, intermediate derivations are omitted, and only the final results are
shown in Eq. (2). A detailed derivation is presented in the Appendix,
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where u represents the macroscopic velocity of the fluid; a, b, and c
are vector components; q represents density; p represents pressure;
and � represents kinematic viscosity. Notably, in Eq. (2), summation is
not applied solely over the index a.

The expansion theories presented in Refs. 12 and 13 yield mathe-
matically equivalent results. However, unlike Ref. 12, the expansion
method in Ref. 13 implies that the error terms may inherently contain
correction terms analogous to subgrid-scale turbulence models.

Next, based on Hypothesis 2, we examine each term in relation to
spatial rotational symmetry and Galilean invariance to identify which
terms comply with these properties. Among the terms on the right-
hand side of Eq. (2), those associated with the anisotropic tensor14 do
not meet these symmetry requirements. The volume force of the SGS
model that preserves symmetry is expressed in the following equation:
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In the present study, the SGS volume force is used directly rather
than being converted back into a stress tensor. Although the diver-
gence Fi ¼ �@jsij is uniquely defined, the stress tensor itself is not,
since adding an isotropic component qdij leaves Fi unchanged. Using
the force-based formulation avoids this ambiguity and provides a
direct connection to the resolved energy budget. Therefore, both the a
priori tests with filtered DNS data and the a posteriori tests within LES
employ the volume force as derived.

III. RESULTS
A. A priori validation

1. Validation approach

We outline the a priori test used to verify the SGS model. This a
priori test must include a computation of the volume force, which is
the correct data, from the DNS in advance, and the following Eq. (4) is
used for this computation:

FDNS
V ;a ¼ �

X
b

@

@xb
sab

¼ �
X
b

@

@xb
uaub � ua � ubð Þ; (4)

where sab is the turbulent stress, which is defined by averaging the
velocity components in the coarse grid.

A top-hat filter15 was used for coarse-graining, and the turbulent
stress was first computed using the fine grid value included in the
coarse grid. Here, we adopted 3D, 5D, 9D, and 17D for the coarse-
graining mesh for computational convenience, where D is the mesh
size of the DNS. The volume force calculation required a differential
operation on the turbulent stress, which was performed using differ-
ences across coarse grid points (i.e., filtered DNS). The DNS data used
were the FORCED ISOTROPIC TURBULENCE DATA SET from the
Johns Hopkins Turbulence Databases (JHTDB).16

To generate the volume force from the SGS model, a coarse-
grained representation of the fluid field was computed by first applying
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a top-hat filter to the velocity and pressure fields in the DNS. A differ-
ential operation was then performed using differences across the
coarse grid points, following each model’s specific formulation.

2. Benchmarking model accuracy

We evaluated the model accuracy by comparing the correlation
coefficients and MAEs of the gradient in Eq. (5) and kinetic in Eq. (3)
models relative to the filtered DNS data. The gradient model, used as a
benchmark in this study, is recognized as one of the most accurate
models for a priori testing,17 capable of capturing the structural behav-
ior of the turbulence stress tensor with high precision,

FGM
V ;a ¼ �D2

12

X
b

@

@xb
X
c

@ua

@xc
@ub

@xc
: (5)

We employed the FORCED ISOTROPIC TURBULENCE
DATA SET16 from the JHTDB to compute the magnitude of the vol-
ume force on a cross-sectional plane defined by t¼ 10, x1¼ [0, 2p],
x2¼ [0,2p], and x3¼ p. The corresponding values of each statistical
quantity are presented in Figs. 1 and 2.

The X-axis in each figure represents the coarse-graining ratio
based on the DNS mesh size. For example, a value of 17 indicates
that the volume force was computed using both the gradient and
kinetic models with data that had been coarse-grained over a
17� 17� 17 ¼ 4913-point volume. However, to compute the filtered
DNS reference, the turbulent stress must still be derived from the origi-
nal DNS resolution, regardless of the extent of coarse-graining. The
correlation coefficients for both models showed moderate yet signifi-
cant correlation (�0:7) with the filtered DNS data. However, the
MAE of the kinetic model was consistently lower than that of the gra-
dient model, indicating superior performance by the kinetic model
(Figs. 1 and 2). To visualize these findings, we examined the absolute
value of the volume force on a mesh of size 5D using contour plots.
These visualizations are shown in Figs. 3–5. The contours confirm that
the correction in the gradient model was weaker than that of the fil-
tered DNS data. By contrast, the size and distribution of the volume
force in the kinetic model closely matched those of the filtered DNS.

We further evaluate the distribution of subgrid-scale (SGS) dissi-
pation predicted by the kinetic model and the gradient model (GM).

This analysis provides a more physically grounded validation, since
dissipation is a key quantity governing energy transfer across scales in
large-eddy simulation (LES).

In addition to the statistical comparison of model accuracy, it is
also important to clarify how the proposed SGS corrections are con-
nected to the turbulent energy transfer across scales. The link between
the proposed SGS corrections and turbulent energy transfer can be
clarified through the resolved kinetic energy budget. The SGS volume
force is defined as

Fi ¼ �@jsij; (6)

and its contribution to the time evolution of the resolved kinetic
energy

EðtÞ ¼ 1
2V

ð
X
uiui dV (7)

FIG. 1. Correlation coefficients between the SGS volume force predicted by the
kinetic model and the gradient model, and the reference obtained from filtered DNS
data (JHTDB). This comparison is conducted as an a priori test using DNS data
only, without any LBM simulations.

FIG. 2. Mean absolute errors (MAEs) of the SGS volume force components pre-
dicted by the kinetic and gradient models, relative to the reference from filtered
DNS data (JHTDB). These results are obtained exclusively from an a priori evalua-
tion, with no direct LBM simulations involved.

FIG. 3. Contour of the absolute volume force at mesh size 5D based on the filtered
DNS (JHTDB). This contour is treated as the reference data.
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is written as
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By integration by parts,

1
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V
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X
sij @jui dV þ 1

V

ð
@X
ðsijuiÞnj dS: (9)

For periodic domains or vanishing–flux boundaries, the surface
term vanishes, and we obtain

1
V

ð
X
uiFi dV ¼ � 1

V

ð
X
sij Sij dV ; (10)

where Sij ¼ 1
2 ð@iuj þ @juiÞ is the resolved strain-rate tensor. Thus, the

SGS dissipation is defined as

eSGS ¼ �hsijSiji ¼ huiFii: (11)

If eSGS > 0, energy flows from resolved scales to subgrid scales
(dissipation), while if eSGS < 0, energy flows in the opposite direction
(backscatter). This demonstrates that the proposed force-based SGS
corrections directly govern the balance of turbulent energy transfer.

Figures 6 and 7 show the correlation coefficient and mean abso-
lute error (MAE) of the dissipation field. It is observed that, in terms of
local statistics, the GM exhibits higher correlation and lower MAE
with respect to the filtered DNS data. In this sense, GM appears more
advantageous for pointwise prediction accuracy.

However, visual inspection of the spatial distribution provides a
different perspective. The contour maps in Figs. 8–10 compare the dis-
sipation fields of DNS, GM, and KM. While GM exhibits higher point-
wise accuracy, the KM produces a global pattern more consistent with
the DNS distribution.

To quantify this global behavior, Fig. 11 presents the circular
directional autocorrelation function (ACF)18,19 of the dissipation field
in the y-direction. Here, the KM shows closer agreement with DNS
compared to the GM, which tends to retain spurious correlations at
larger separations. This indicates that, although the GM is more accu-
rate locally, the KM reproduces the large-scale structure of dissipation
more faithfully. Similar tendencies were also confirmed for each com-
ponent of the SGS volume force.

In summary, the present a priori dissipation test highlights a
complementary behavior: the GM performs better in terms of local
correlation and MAE, whereas the KM better captures the global
distribution and large-scale coherence of SGS dissipation. These

FIG. 4. Contour of the absolute volume force at mesh size 5D based on the gradi-
ent model. The correction in the gradient model was weaker than that in the filtered
DNS data.

FIG. 5. Contour of the absolute volume force at mesh size 5D based on the kinetic
model (correction terms only). The results are validated against filtered DNS
(JHTDB) in an a priori test, without any LBM simulations. The distribution of the vol-
ume force in the kinetic model closely matched that of the filtered DNS.

FIG. 6. Correlation coefficients of SGS dissipation predicted by the gradient model
and the kinetic model, compared with the reference obtained from filtered DNS data
(JHTDB). The comparison is performed as an a priori test using various coarse-
graining ratios.
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tendencies were also observed consistently in each component of the
volume force.

Ultimately, the decisive assessment of predictive capability must
rely on a posteriori tests, where numerical stability, nonlinear feedback,
and long-time energy transfer are all taken into account.

B. A posteriori validation

1. Validation approach (Taylor–Green vortex, Re51600)

We compare (i) the time evolution of the total dissipation rate
eðtÞ and (ii) the kinetic energy spectrum EðkÞ from the LES solutions.
The definition of the box-averaged total dissipation rate is used,

e ¼ � dE
dt

; (12)

E ¼ 1
V

ð
X

1
2
ui ui dV: (13)

Here, V is the domain volume and ui is the resolved velocity. The
energy spectra EðkÞ are computed with the standard OpenFOAM20

functionObject energySpectrum.

FIG. 7. Mean absolute errors (MAEs) of SGS dissipation predicted by the GM and
KM, relative to filtered DNS data (JHTDB). The results are obtained from a priori
tests at different coarse-graining ratios.

FIG. 8. Contour of SGS dissipation at coarse-graining ratio 5D based on filtered
DNS data (JHTDB). This distribution is treated as the reference field for
comparison.

FIG. 9. Contour of SGS dissipation at coarse-graining ratio 5D predicted by the gra-
dient model. The local intensity is captured, but the global distribution deviates from
DNS.

FIG. 10. Contour of SGS dissipation at coarse-graining ratio 5D predicted by the
kinetic model. The global distribution more closely resembles the DNS reference
compared with the GM.
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The a posteriori calculations of the Taylor–Green vortex (TGV)
at Re ¼ 160010 are performed under the following conditions:

• Code/version: OpenFOAM v2212.
• Solver: pisoFoam (incompressible, transient).
• Grids: uniform Cartesian meshes with N3 cells, N ¼ 64.
• Spatial discretization (finite volume method, FVM): interpola-
tion from cell centers to face centers uses fourth-order (cubic)
schemes.

• Time integration: second-order backward implicit (backward).
• Time step: Dt ¼ 1:0� 10�3 s.
• Domain: periodic cube, �pL � x; y; z � pL.
• Boundary conditions: periodic in all three directions.
• Reynolds number and viscosity: Re ¼ U0L=� ¼ 1600 ) � ¼
6:25� 10�4 (nondimensional units).

Unless otherwise stated, spatial and temporal averages are
volume-integrated over the full periodic box.

2. Benchmarking model accuracy

Figure 12 shows the volume-averaged dissipation eðtÞ. The DNS
peak occurs at tDNSp ¼ 8:97 s with eDNSp ¼ 1:286� 10�2. The KM peaks
at tp ¼ 8:673 s (�0:30 s vs DNS) with ep ¼ 1:316� 10�2 (þ2:4%).
The GM peaks at tp ¼ 8:152 s (�0:82 s) with ep ¼ 1:331� 10�2

(þ3:5%). Smagorinsky (SM): tp ¼ 8:447 s (�0:52 s) and ep ¼ 1:176
�10�2 (�8:6%). Over t 2 ½0; 20� s, the mean absolute error (MAE) of e
is smaller for KM than GM (KM: 4:75� 10�4; GM: 7:46� 10�4), with
SM much larger (1:38� 10�3). In short, KM matches the DNS peak
time/value and the time history slightly better than GM.

Next, we examine the energy spectrum. At t ¼ 10 s (Fig. 13; high-k
inset in Fig. 14), both KM and GM reproduce the low-k range; differ-
ences appear only at high wave numbers. Using the mean log-spectral
error over k 2 ½10; 30�, KM is lower than GM by �10% at t ¼ 10 s
(KM 0.192 vs GM 0.213) and by �8% on average over t 2 ½8; 10� s
(KM 0.199 vs GM 0.216; Fig. 15). Thus, the a posteriori evidence indi-
cates a small but consistent edge of KM over GM in the dissipative
(high-k) range while maintaining comparable accuracy elsewhere.

Finally, we note the computational cost of the different SGS mod-
els on a 643 grid. The required wall-clock times were approximately
1.77h for KM, 1.45h for GM, and 1.20 h for SM. Although KM is

FIG. 11. Circular directional autocorrelation function (ACF) of SGS dissipation in the
x-direction. The horizontal axis denotes the lag (the amount of spatial shift in the
image). The KM shows closer agreement with DNS than the GM, which retains spu-
rious correlations at larger separations.

FIG. 12. Time evolution of the box-averaged dissipation rate eðtÞ in the Taylor–
Green vortex at Re ¼ 1600. The horizontal axis denotes time t. The KM reproduces
the DNS peak time and amplitude more accurately than the GM, while the
Smagorinsky model underestimates dissipation.

FIG. 13. Energy spectrum EðkÞ at t ¼ 10 s for the Taylor–Green vortex at
Re ¼ 1600. The horizontal axis is the wavenumber k, and the vertical axis is the
kinetic energy density. Both KM and GM reproduce the low-k range in agreement
with DNS.

FIG. 14. Energy spectrum EðkÞ at t ¼ 10 s for the Taylor–Green vortex at
Re ¼ 1600. The horizontal axis is the wavenumber k, and the vertical axis is the
kinetic energy density. Differences appear at high k, where KM yields slightly better
agreement with DNS than GM.
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slightly more expensive than GM and SM, the additional cost is mod-
est and may be justified by its improved stability and accuracy.

IV. CONCLUSION

In this study, we have deductively derived a parameter-free sub-
grid-scale (SGS) model from the error analysis of the lattice
Boltzmann equation and validated its performance through both a pri-
ori and a posteriori tests. The main findings are summarized as
follows.

First, in a priori tests using filtered DNS data, the evaluation
based on the magnitude of the SGS volume force showed that the
kinetic model reproduced the DNS reference more closely than the
gradient model. From a local perspective, correlation coefficients and
mean absolute errors (MAEs) indicated that GM slightly outperformed
KM, whereas visual inspection of contour plots suggested that KM
reproduced the global distribution more faithfully. When SGS dissipa-
tion was considered, GM again showed better local accuracy in terms
of correlation and MAE, but KM exhibited superior global agreement
with DNS when assessed through contour patterns and the autocorre-
lation function (ACF).18,19

Second, in the a posteriori validation using the Taylor–Green vor-
tex at Re ¼ 1600, the KM consistently outperformed the GM in
terms of dissipation rate and spectral analysis. Specifically, the KM
reproduced the DNS peak dissipation at tp ¼ 8:673 s with
ep ¼ 1:316� 10�2, very close to the DNS value eDNSp ¼ 1:286� 10�2

at tDNSp ¼ 8:97 s. By contrast, the GM predicted an earlier peak at
tp ¼ 8:152 s with ep ¼ 1:331� 10�2, corresponding to a 3.5% over-
shoot. The time-averaged MAE of the dissipation rate was also smaller
for KM (4:75� 10�4) than for GM (7:46� 10�4). In the spectral
domain, both models reproduced the low-k range accurately, but in
the dissipative range (k 2 ½10; 30�), KM yielded consistently lower log-
spectral errors than GM (0.192 vs 0.213 at t ¼ 10 s; 0.199 vs 0.216 on
average over t 2 ½8; 10� s). These results demonstrate that KM has a
systematic advantage over GM, even in the Taylor–Green vortex, a
canonical test case where the GM is generally considered strong.21,22

Third, the mathematical form of KM includes a hyperviscosity
term,23 given by

FHV
a ¼ � �D2

6

X
b;c

@4ua

@xb@xb@xc@xc
: (14)

The contribution of this term to the resolved kinetic energy
budget is

ð
X
uaF

HV
a dV ¼ � �D2

6

ð
X
ua r4ua dV: (15)

Applying integration by parts twice and assuming periodic
boundaries (or vanishing fluxes), we obtainð

X
uaF

HV
a dV ¼ � �D2

6

ð
X
ðr2uaÞ2 dV � 0: (16)

Thus, the hyperviscosity term always provides a non-positive
contribution to the resolved energy balance, i.e., it is strictly dissipative.
Therefore, KM ensures numerical stability by preventing spurious
energy backscatter, which explains its enhanced robustness compared
with GM.

In addition, it should be noted that the remaining parts of the
SGS volume force in Eq. (3), other than the hyperviscosity, can be writ-
ten as gradients of scalar potentials. Such gradient terms may influence
the local distribution of dissipation, but their volume integral reduces
to a surface flux that vanishes under periodic or homogeneous bound-
ary conditions. Consequently, they do not contribute to the net dissi-
pation, and the strictly dissipative effect originates solely from the
hyperviscosity term.

Finally, although the present analysis was restricted to isotropic
turbulence and the Taylor–Green vortex, the lattice Boltzmann method
is inherently based on a cubic lattice, which limits immediate applica-
tion to wall-bounded flows. Nevertheless, recent developments24–27 of
rectangular-grid and non-uniform lattice formulations suggest that
extension of the present model to more general flow configurations is
technically feasible. Our future work will, therefore, focus on incorpo-
rating such lattice refinements and assessing the applicability of the
deductive SGS model to complex wall-bounded turbulence.
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FIG. 15. Log-spectral error of the energy spectrum relative to DNS for k 2 ½10; 32�
during t 2 ½8; 10� s. The horizontal axis denotes time t, and the vertical axis
denotes the mean log-spectral error. KM shows consistently smaller errors than GM
in the dissipative range, confirming the slight but systematic advantage of KM in a
posteriori tests.
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APPENDIX: DERIVATION OF THE KINETIC MODEL

Here, we derive the kinetic model from the LBE. As established
in the literature,12 the distribution function is expressed as a power
series of dt , and each undetermined coefficient is defined as follows:

fi ¼ f 0ð Þ
i þ dt f

1ð Þ
i þ d2t f

2ð Þ
i þ d3t f

3ð Þ
i þ � � � : (A1)

The equation to be solved is the LBE shown as follows:

fi x þ cidt ; t þ dtð Þ � fi x; tð Þ ¼ � 1
u

fi � f eqi
� �

: (A2)

By Taylor-expanding the left-hand side of Eq. (A2) and for-
mally substituting Eq. (A2), we obtain the following evolution equa-
tion for the distribution function:

D̂if
0ð Þ

i þ dt
1
2
D̂

2
i f

0ð Þ
i þ D̂if

1ð Þ
i

� �
þ d2t

1
6
D̂

3
i f

0ð Þ
i þ 1

2
D̂

2
i f

1ð Þ
i þ D̂if

2ð Þ
i

� �

þ d3t
1
24

D̂
4
i f

0ð Þ
i þ 1

6
D̂

3
i f

1ð Þ
i þ 1

2
D̂

2
i f

2ð Þ
i þ D̂if

3ð Þ
i

� �

¼ � 1
u

f 1ð Þ
i þ dt f

2ð Þ
i þ d2t f

3ð Þ
i þ d3t f

4ð Þ
i þ � � �

� �
: (A3)

By rearranging terms by the degree of dt , we obtain the follow-
ing relationship that holds for each order:

d0t : 0 ¼ f 0ð Þ
i � f eqi ; (A4)

d1t : D̂if
0ð Þ

i ¼ � 1
u
f 1ð Þ
i ; (A5)

d2t :
1
2
D̂

2
i f

0ð Þ
i þ D̂if

1ð Þ
i ¼ � 1

u
f 2ð Þ
i ; (A6)

d3t :
1
6
D̂

3
i f

0ð Þ
i þ 1

2
D̂

2
i f

1ð Þ
i þ D̂if

2ð Þ
i ¼ � 1

u
f 3ð Þ
i ; (A7)

d4t :
1
24

D̂
4
i f

0ð Þ
i þ 1

6
D̂

3
i f

1ð Þ
i þ 1

2
D̂

2
i f

2ð Þ
i þ D̂if

3ð Þ
i ¼ � 1

u
f 4ð Þ
i : (A8)

From the aforementioned equation, we express the undeter-
mined coefficients of each degree of dt using only the zeroth-order
distribution function, yielding the following:

f 1ð Þ
i ¼ �uD̂if

0ð Þ
i ; (A9)

f 2ð Þ
i ¼ u u� 1

2

� �
¼ 2u2 � u

2
D̂

2
i f

0ð Þ
i ; (A10)

f 3ð Þ
i ¼ �6u3 þ 6u2 � u

6
D̂

3
i f

0ð Þ
i ; (A11)

f 4ð Þ
i ¼ 24u4 � 36u3 þ 14u2 � u

24
D̂

4
i f

0ð Þ
i : (A12)

Substituting the above into Eq. (A3), we write the evolution
equation using only the zeroth-order distribution function and
obtain the following:

X
i

D̂if
0ð Þ

i ci;a þ
X
i

dt
�2uþ 1

2
D̂

2
i f

0ð Þ
i ci;a þ

X
i

d2t
6u2 � 6uþ 1

6

� D̂
3
i f

0ð Þ
i ci;a þ

X
i

d3t
�24u3 þ 36u2 � 14uþ 1

24
D̂

4
i f

0ð Þ
i ci;a ¼ 0:

(A13)

By explicitly expanding Eq. (A13), we obtain the following.
Here, the third-order term of dt corresponds to the third order of D,
but when the viscosity is large, only the last fourth-power term of c
can be regarded as the square of D. Therefore, we do not ignore it
here,

X
i

D̂if
0ð Þ

i ci;a þ
X
i

dt
�2uþ 1

2
D̂

2
i f

0ð Þ
i ci;a

þ
X
i

d2t
6u2 � 6uþ 1

6
@

@xb
@

@xc
@

@xd
ci;aci;bci;cci;df

ð0Þ
i

þ
X
i

d2t
6u2 � 6uþ 1

6
3

@

@xb
@

@xc
@

@t
ci;aci;bci;cf

ð0Þ
i

þ
X
i

d2t
6u2 � 6uþ 1

6
3

@

@xb
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@
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ci;aci;bf

ð0Þ
i

þ
X
i

d2t
6u2 � 6uþ 1

6
@
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@
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@
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ð0Þ
i

þ
X
i

d3t
�24u3 þ 36u2 � 14uþ 1

24

� @

@xb
@

@xc
@

@xd
@

@xe
ci;aci;bci;cci;dci;ef

ð0Þ
i ¼ 0: (A14)

The aforementioned equation can be transformed as follows
for the quadratic term of D. The first equation uses Euler’s equation,
and the second accounts for the fact that the order is the square of
ðD=cÞ2,
X
i

d2t
6u2 � 6uþ 1

6
@

@xb
@

@xc
@

@xd
ci;aci;bci;cci;df
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i
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i
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6
3
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@
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ð0Þ
i

þ
X
i
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6u2 � 6uþ 1

6
2

@

@xb
@

@t
@

@t
ci;aci;bf

ð0Þ
i

þ @

@t
@

@t

X
i

d2t
6u2 � 6uþ 1

6
@

@xb
ci;aci;b þ @

@t
ci;a

� �
f ð0Þi

¼
X
i

d2t
6u2 � 6uþ 1

6
@

@xb
@

@xc
@

@xd
ci;aci;bci;cci;df

ð0Þ
i

þ
X
i

d2t
6u2 � 6uþ 1

6
3

@

@xb
@

@xc
@

@t
ci;aci;bci;cf

ð0Þ
i

þ d2t
6u2 � 6uþ 1

6
2

@

@xb
@

@t
@

@t
quaub þ pdabð Þ

¼
X
i

d2t
6u2 � 6uþ 1

6
@

@xb
@

@xc
@

@xd
ci;aci;bci;cci;df

ð0Þ
i

þ
X
i

d2t
6u2 � 6uþ 1

6
3

@

@xb
@

@xc
@

@t
ci;aci;bci;cf

ð0Þ
i : (A15)

We use the following expression for the equilibrium distribu-
tion function for D3Q27:11

f eqi ¼ xiq
1
c2s

p
q
þ ci;lci;�ulu�

2c4s
� ulul

2c2s

� �
þ xiq

ci;lul
c2s

� �
: (A16)
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The following relational expression is obtained from the
LBM:13

� ¼ c2s dt u� 1
2

� �
! c4d3t ¼

6�
2u� 1

D2: (A17)

The following relational expressions, though self-evident, are
shown as follows:

D ¼ cdt : (A18)

The DNS calculation conditions used in this paper are

D ¼ 2p=1024 ¼ 0:00614; (A19)

dt ¼ 0:0002; (A20)

� ¼ 0:000 185; (A21)

c ¼ D=dt ¼ 30:7; (A22)

cs ¼ 30:7=
ffiffiffi
3

p ¼ 17:7: (A23)

Using these conditions, the coefficients of Eq. (A14) are calcu-
lated as follows:

u� 1
2
¼ 0:002 95; (A24)

6u2 � 6uþ 1
6

¼ � 1
12

; (A25)

�12u2 þ 12u� 1
4

¼ 1
2
: (A26)

Substituting these into Eq. (A14) and rearranging, we obtain
the following:

X
i

D̂if
0ð Þ

i ci;a þ
X
i

dt
�2uþ 1

2
D̂

2
i f

0ð Þ
i ci;a

� 1
4
D2
X
i

xiei;aei;bei;cei;d
@
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@xd
p

� 3
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qD2

X
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@
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@

@xd
ulu�

þ 1
8
qD2

X
i

xiei;aei;bei;cei;d
@
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@
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@

@xd
ulul

� 3
4
qD2

X
i
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@
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þ 3
2
q�D2

X
i

xiei;aei;bei;cei;dei;lei;�
@

@xb
@

@xc
@

@xd
@

@xl
u� ¼ 0:

(A27)

The fourth- and sixth-order tensors in D3Q27 are calculated as
follows:14

X
i

xiei;aei;bei;cei;d ¼ 1
9
D 4ð Þ
abcd; (A28)

X
i

xiei;aei;bei;cei;dei;lei;� ¼ 1
27

D 6ð Þ
abcdl� �

2
9
dabcdl�: (A29)

Using this equation, the sixth-order tensor appearing in the
fourth term on the left-hand side of Eq. (A27) is calculated as
follows:

@

@xb
@

@xc
@

@xd
ulu�

X
i

xiei;aei;bei;cei;dei;lei;�

¼ 1
27
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@
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9
@
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� �3

u2a: (A30)

Similarly, the sixth-order tensor appearing in the seventh term
on the left-hand side of Eq. (A27) is calculated as follows:

X
i

xiei;aei;bei;cei;dei;lei;�qu�

¼ 1
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@xd
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9
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9
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@
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9
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� �4

quað Þ: (A31)

Substituting Eqs. (A28), (A30), and (A31) into Eq. (A27) and
rearranging, we obtain the following:

X
i

D̂if
0ð Þ

i ci;a þ
X
i

dt
�2uþ 1

2
D̂

2
i f

0ð Þ
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þ q�D2

6
@
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@

@xb
@
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@

@xc
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@

@xa

� �4

ua

( )
¼ 0: (A32)

The usual Navier–Stokes equation can be obtained from the
first and second terms of Eq. (A32), but here, we confirm this and
ensure that no extra terms corresponding to the turbulence model
are generated. By writing out the first and second terms of Eq.
(A32) and expanding them, we obtain the following equation:

X
i

D̂if
0ð Þ

i ci;a þ
X
i

dt
�2uþ 1
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i f
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�2uþ 1
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@
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@
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0ð Þ
i : (A33)

As the second term on the right-hand side of Eq. (A33) does
not include a time derivative and cannot yield a turbulence model,
the results are shown as follows with reference to Ref. 13:
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As the third term on the right-hand side of Eq. (A33) contains
a time derivative, we approximate it using the Navier–Stokes equa-
tion to obtain the following result:
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: (A35)

The aforementioned term is the viscous term multiplied by the
viscosity and the value of Eq. (A24), which is very small relative to the
viscous term and, therefore, can be neglected. This also shows that if
the time derivative is approximated using the NS equation instead of
the Euler equation, the viscosity term is multiplied by a very small
value, making it acceptable to use the Euler equation in practice.

From this consideration, it follows that the time derivative of
the fourth term on the right-hand side of Eq. (A33) can also be
approximated by the Euler equation, and the following result is
obtained from Ref. 13:X
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By substituting Eqs. (A35), (A36), and (A37) into Eq. (A32),
the following equation is obtained, confirming the derivation of the
kinetic model:
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